On a pattern avoidance condition for the wreath product of cyclic groups with symmetric groups

نویسندگان

  • Sergey Kitaev
  • Jeffrey Remmel
  • Manda Riehl
چکیده

In this paper, we extend, to a non-consecutive case, the study of the pattern matching condition on the wreath product Ck o Sn of the cyclic group Ck and the symmetric group Sn initiated in [2]. The main focus of our paper is (colored) patterns of length 2, although a number of enumerative results for longer patterns are also presented. A new non-trivial bijective interpretation for the Catalan numbers is found, which is the number of elements in C2 o Sn bi-avoiding simultaneously (1-2,0 0) and (1-2,0 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New pattern matching conditions for wreath products of the cyclic groups with symmetric groups

We present several multi-variable generating functions for a new pattern matching condition on the wreath product Ck o Sn of the cyclic group Ck and the symmetric group Sn. Our new pattern matching condition requires that the underlying permutations match in the usual sense of pattern matching for Sn and that the corresponding sequence of signs match in the sense of words, rather than the exact...

متن کامل

Fix-euler-mahonian Statistics on Wreath Products

In 1997 Clarke, Han, and Zeng introduced a q-analogue of Euler’s difference table for n! using a key bijection Ψ on symmetric groups. In this paper we extend their results to the wreath product of a cyclic group with the symmetric group. By generalizing their bijection Ψ we prove the equidistribution of the triple statistics (fix, exc, fmaj) and (fix, exc, fmaf) on wreath products, where “fix”,...

متن کامل

Pattern Avoidance in Coloured Permutations

Let Sn be the symmetric group, Cr the cyclic group of order r, and let S (r) n be the wreath product of Sn and Cr; which is the set of all coloured permutations on the symbols 1, 2, . . . , n with colours 1, 2, . . . , r, which is the analogous of the symmetric group when r = 1, and the hyperoctahedral group when r = 2. We prove, for every 2letter coloured pattern φ ∈ S 2 , that the number of φ...

متن کامل

Nonrigid Group Theory of Water Clusters ( Cyclic Forms): (H2O)i for 2<=i<=6

The character table of the fully nonrigid water cluster (cyclic forms), (H_{2}O){_i}, with C{_ih} symmetry derived for the first time, for 2<=i <=6. The group of all feasible permutations is the wreath product of groups S{_i}[S{_2}] which consists of i!2i operations for i = 2, ..., 6 divided into ( w.r.t) 5, 10, 20, 36, 65 conjugacy classes and 5, 10, 20, 36, 65 irreducible representations resp...

متن کامل

Automorphisms of Regular Wreath Product p-Groups

We present a useful new characterization of the automorphisms of the regular wreath product group P of a finite cyclic p-group by a finite cyclic p-group, for any prime p, and we discuss an application. We also present a short new proof, based on representation theory, for determining the order of the automorphism group Aut P , where P is the regular wreath product of a finite cyclic p-group by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009